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The sterically hindered CH(SiMp alkyl group is ubiquitous
in organolanthanide chemisttyAlthough close intramolecular
contacts between CH(SiMg and a lanthanide have often been
characterized by X-ray diffractiohgonclusive evidence as to the
exact nature of these interactions (i@en, Ocsj, Ssic, andycn)
requires accurate determinationadf atomic coordinates, includ-
ing those of the hydrogen atoms. The lack of detailed structural
information contrasts sharply with the abundance of transition
metal complexes showing well-defined agostic interactioe
report the first neutron diffraction studies of such lanthanide
complexes on (§Mes)Y(OAr)CH(SiMes), (OAr = O-2,6-GH3'-

Bu,) (1)* and (GMes)La{ CH(SiMe;)2} » (2)° which clearly show
that thefsc agostic interaction predominates.

The molecular structure ofl as determined by neutron
diffraction” at 20 K shows a distorted CH(SiN)e group with
both Y---Si(1) [3.281(4) A] and ¥--C(2) [2.972(3) A] well
within the sum of their van der Waals radii. There are also remote
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C—H---Y interactions involving two of the aryloxid8u hydrogen
atoms [Y(1):+H(16a) 2.526(6) A; [Y(1)--H(16e) 2.935(6) A].
The overall structure as determined by single-crystal neutron
diffraction® of 25 at 15 K is in good agreement with that from
X-ray diffractior? at 200 K. The coordinative unsaturation at La
is relieved by interaction with two S+ Me, bonds, one from each
CH(SiMey), group [La--Si(2) 3.346(10) A, La+C(17) 2.964(8)

A, La:+-Si(4) 3.416(13) A, L&-C(22) 2.973 (9) A].

None of the short €H---M intramolecular contacts it or 2
show a statistically significant elongatibof the C-H bonds
(Table 1). In contrast, the elongation of the agostjc-8l, bonds
is significant (0.037 A average for the three CH(Si)dagroups
in 1 and2). This indicates that the metal center interacts mainly
with the -Si—C bond, not with the y-C—H bonds. This
interpretation is supported by an analysis of the -&8i—C—H
torsion angles of the agostic methyl groups. An average angle of
~0° corresponds to an eclipsed conformation and indicates an
attractive C-H---M interaction; this is only seen in thiu
contacts inl. Values near£60° correspond to a staggered
conformation, in which the>-C—H bonds avoid the metal to let
the Si=C bond approach as closely as possible; the three CH-
(SiMes), groups inl and2 all show a staggered geometry (Table
1). This minimizes close secondary contacts with the metal and
placestwo hydrogens from each interactingMe group inl and
2 almost equidistant from the metal. Staggered agostic methyl
groups have been previously obser¢ed, but the inherent
inaccuracy of hydrogen atom position by X-ray diffraction made
any further analysis difficult.

To dispel any remaining doubts concerning-i& bond
lengths!® a DFT study! on the model compound (8s)La{ CH-
(SiMes)2}2 (3) was undertaken. Full geometry optimization
resulted in a structure with two agostic-t&iz—C, contacts, but
in a conformation slightly different from that & we attribute
this to steric effects. Both agostic methyl groups are staggered,
like those inl and2. Because there are no random errors or crystal
packing effects in the calculation, the spread inKC distances
is much smaller than in the neutron diffraction results. The
difference in bond lengths between agostic and nonagostid C
bonds is minute (0.005 A). In contrast, the elongation of the
agostic Si-C bonds is significant (0.036 A), and virtually identical
to the experimental value. The agreement of experimensaid
calculated3 indicates that the observed geometry is not caused
by the bulk of the GMes group. The effects are probably
electronic, rather than steric, in origin, although this work does
not prove this? These results confirm that the dominant agostic
interactions in lanthanideCH(SiM&), complexes are of the
M---Siz—C, type?®as calculated for [GTiC(SiH,Me)=CH,]*°
a model for [CRTIC(SiMes)=CMePh]AICL.*
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Table 1. Geometrical Details of Interactions iy 2, and3

C—H Si;—Me, M--X —C—H
M-+H <3.1A M:H > 3.1 A agostic av nonagostic  torsion angle
1: 'Bu
C(162)-H(16a,b,c) 1.102(6) 1.088(6), 1.092(6) na na —21.0
C(163)-H(16e,d,f) 1.101(6) 1.088(6), 1.093(6) —23.9
Sig—Me,2 na na 1.912(5) 1.876 —45.7
C(1)—H(1) 1.115(5% na na na na
y-C(2)—H(2a,b,c) 1.093(7), 1.099(4) 1.081(7) na na na
2: Sip—Me,? na na 1.917(13) 1.881 59.3
Sig—Me,? na na 1.920(15) 1.880 —-58.1
C(11y-H(11)2 C(12)-H(12y 1.120(16) 1.107(15) na na na na
y-C(17y-H(17a,c,b} 1.084(24), 1.070(12) 1.048(18) na na na
y-C(22)-H(22a,c,b) 1.088(18), 1.101(15) 1.082(18) na na na
3. Sig—Me,? na na 1.951 1.906 —58.8
Siz—Me,? na na 1.935 1.908 50.1
o-C—H.2 a-C—HP 1.11521.11% na na na na
y-C—H? 1.107,1.108 1.103 na na na
y-C—HP 1.103, 1.107 1.104 na na na

aUnit on CH(SiMe), group with methine CH pointing toward CpUnit on CH(SiMe), group with methine CH pointing away from Cp.

Figure 1. Molecular structure of (€Mes)Y(OAr)CH(SiMes), (1) at 20

K. Hydrogen atoms omitted except on methine group and on methyl )

groups in close proximity to the metal. Selected distances (A) and angles Figure 2. Molecular structure of (Mes)La{ CH(SiMes)2} (2) at 15 K.

(deg): Y(1)+-H(2a,b,c) 2.599(7), 3.029(9), 4.029, YEH(1) 2.731(6), Hydrogen atoms omitted except on methine groups and on methyl groups

Y(1)-C(L)-H(1) 94.7(3), Y(1)--H(16a) 2.526(6), Y(1)}H(16e) in close proximity to the metal. Selected distances (A) and angles (deg):

2.935(6). La---H(17a) 2.731(17), La-H(17c) 2.820(17), La-H(22a) 2.818(16),
La---H(22c) 2.768(16), LaC(11}-H(11) 95.7(8), LaC(12)-H(12)

Acute M—C,—H angles!s as determined by X-ray diffraction, 94.0(13), La-H(11) 2.87(2), Lar-H(12) 2.88(2).

and smalltJcy couplings have often been cited as evidence for
an acy agostic interaction. However, the present work doets
support this interpretation (Table 1). The three-®,—H angles conformational preference is, indeed, rather soft.
in 1 and2 are >90°, and the elongation of the methine-€l Although previously postulated, and supported by theoretical
bonds is not statistically significafit.The calculated structure of  studies’ we provide unequivocal evidence that a polarized, high-
3 shows the same features, with arC—H bond elongation of  energy, spatially diffuse SiMe o-bond clearly takes precedence
only 0.01 A. overa-C—H-++Ln andy-C—H:-+-Ln interactions in stabilizing the
Interestingly, the interacting-methyl groups are “tilted” away  lanthanide center.
from the metal’ This could be due to repulsion; however, an
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